number, mixed base - vertaling naar arabisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

number, mixed base - vertaling naar arabisch

POSITIONAL NUMERAL SYSTEM
Phinary; Golden mean base; Base Phi; Base-phi; Base φ; Base-φ; Golden-ratio base; Base phi; Base-ph; Base ph; Base phi number system; Base Phi number system; Base φ number system

number, mixed base      
عدد ذو اساس مختلط
عدد ذو اساس مختلط      

number, mixed base

acid-base balance         
  • doi-access=free }}</ref>
HOMEOSTATIC REGULATION OF THE PH OF THE BODY'S EXTRACELLULAR FLUID (ECF)
Mixed disorder of acid-base balance; Acid-base balance; Mixed acid-base balance disorder; Acid-base physiology; PH regulation (biology); Acid base homeostasis; Body buffer; Buffer system; Acid base physiology; Physiological pH; Acid base disorder; Human pH; Hydrogen ion homeostasis; Acid-base homeostasis; Acid base status; Blood pH; Acid-base content in body fluids; Mixed disorder of acid–base balance; Acid–base physiology; Blood buffer
التَّوازُنُ الحَمْضِيُّ القاعِدِيّ

Definitie

mixed media
¦ noun a variety of media used in entertainment or art.
¦ adjective (mixed-media) another term for multimedia.

Wikipedia

Golden ratio base

Golden ratio base is a non-integer positional numeral system that uses the golden ratio (the irrational number 1 + 5/2 ≈ 1.61803399 symbolized by the Greek letter φ) as its base. It is sometimes referred to as base-φ, golden mean base, phi-base, or, colloquially, phinary. Any non-negative real number can be represented as a base-φ numeral using only the digits 0 and 1, and avoiding the digit sequence "11" – this is called a standard form. A base-φ numeral that includes the digit sequence "11" can always be rewritten in standard form, using the algebraic properties of the base φ — most notably that φ (φ1) + 1 (φ0) = φ2. For instance, 11φ = 100φ.

Despite using an irrational number base, when using standard form, all non-negative integers have a unique representation as a terminating (finite) base-φ expansion. The set of numbers which possess a finite base-φ representation is the ring Z[1 + 5/2]; it plays the same role in this numeral systems as dyadic rationals play in binary numbers, providing a possibility to multiply.

Other numbers have standard representations in base-φ, with rational numbers having recurring representations. These representations are unique, except that numbers with a terminating expansion also have a non-terminating expansion. For example, 1 = 0.1010101… in base-φ just as 1 = 0.99999… in base-10.